找答案
考试指南
试卷
请在
下方输入
要搜索的题目:
搜 索
证明:当x>0时,ln(1 x)<x.
证明:当x>0时,ln(1 x)<x.
发布时间:
2025-07-24 18:41:06
首页
注册建筑师
推荐参考答案
(
由 快搜搜题库 官方老师解答 )
联系客服
答案:
[证明]令f(x)=ln(1 x)-x,则f(0)=0,f'(x)= <0,所以,f(x)在(0, ∞)内单减,从而当x>0时,f(x)<f(0)=0,即ln(1 x)<x.[点评]此结论可以直接使用.
相关试题
1.
证明:当x>0时,ln(1 x)<x.
2.
(1)当x>0时,1 x>√1 x
3.
★★10.设x>0,证明:x
4.
If and only if x=ln(y), y=e^x.
5.
已知函数f(x)=ln(1+x)x.
6.
m(x ——)(x 1)当 m 0时,G'(x) m
7.
当x趋向于0,lime^x-1/ln(1 x)=
8.
某分段函数为:当x>0时, f(x)=1;当x
9.
已知函数f(x)是奇函数,当x>0时,f(x)=2x-3,则当x<0时,f(x)=______.
10.
nnxnn的和函数为(1−x)ln(1−x) x, 所以特解还可以写成y=2x (1−x)ln(1−x)
热门标签
考研数学题库
小学教师资格题库
高校教师资格证考试题库
公务员行测题库
银行高管题库
初级考试题库
国家电网考试题库
行测资料分析题库
执业药师考试题库
社区考试题库及答案
消防题库及答案
大学生题库
社区工作者题库
法律常识题库
银行招聘题库
能力测试题库
题库官网
经济学题库
城管考试题库
行政测试题库