答案:答:误差反向传播的BP算法简称BP算法,就是有导师的学习,其基本思想就是梯度下降法。它采用梯度搜索技术,以使网络的实际输出值与期望输出值的误差均方值为最小。学习的过程由正向传播与反向传播组成,在正向过程中,输入信息由输入层经隐层逐层处理,并传向输出层,每层神经元的状态只影响下一层神经元的状态,如果在输出层不能得到期望的输出,则转至反向传播,将误差信号按连接通路反向计算,由梯度下降法来调整各层神经元的权值,使误差信号减小。主要优点:(1)非线性映射能力:无需事先了解描述这种映射关系的数学方程,只要提供足够多的样本模式对BP网络进行详细训练,它便能完成由n维输入空间到m输出空间的非线性映射。(2)泛化能力:当向网络输入训练时未曾见过的非样本数据时,网络也能完成由输入空间向输出空间的正确映射,这种能力称为多层前馈网络的泛化能力。(3)容错能力:输入样本中带有较大的误差,甚至个别错误对网络的输入输出规律影响很小。标准的BP算法内在的缺陷:(1)易形成局部极小而得不到全局最优;(2)训练次数多使得学习效率低,收敛速度慢;(3)隐节点的选取缺乏理论指导;(4)训练时学习新样本有遗忘旧样本的趋势。增大权值不一定能够使BP学习变慢,由BP权值修正的原理可知,权值调整公式可汇总如下: