- 首页
- 专业技术继续教育
答案:
-
1.=1 x x2 … xn 0(xm
-
2.设m,n∈Z ,证明:当x→0时,(1)o(xm) o(xn)=o(xl),l=min{m,n};(2)o(xm)×o(xn)=o(xm n);(3)若α是x→0时的无穷小,则αxm=o(xm);(4)
-
3.(2)∑(1-x)xn,0
-
4.数列{xn}满足:x1=1,x2=-1,且xn-1 xn 1=2xn(n≥2),则xn=______.
-
5.若xm=3,xn=2,则xm n=______.
-
6.若X1,X2…Xn是来自总体X的一个简单随机样本,则X1,X2…Xn满足()
-
7.如果X1,X2,…,Xn是n个随机变量,则称X = (X1,X2,…,Xn)为n维随机变量.
-
8.、求极限: lim ( x2 x 1 x2 x 1) .
-
9.若X~U[-a, a](a>0), X1,X2,...Xn是来自X的样本, 则a的极大似然估计是
-
10.3.决定m,n,p使下列条件成立:o-r 13n 13m1m3 2)x4 x2 1|x3m x3n 1 x3p 23)x2 x 1|x2m xm 14)(x-1)2mx4 x2 1