有限维空间上的线性变换总是将线性相关的向量组映射为线性相关的向量组, 将线性无关的向量组映射为线性无关的向量组.
- 首页
- 职称继续教育
-
1.有限维空间上的线性变换总是将线性相关的向量组映射为线性相关的向量组, 将线性无关的向量组映射为线性无关的向量组.
-
2.设向量组 a 1 , a 2 , a 3 线性无关 , 则下列向量组线性相关的是
-
3.设向量组a1,a2,a3线性无关,则下列向量组线性相关的是
-
4.一个向量组要么是线性相关,要么是线性无关。( )
-
5.向量组只包含一个向量a时,a为0向量,则说A线性相关; 若a≠0, 则说A线性无关
-
6.向量组只包含一个向量a时,a为0向量,则说A线性相关; 若a≠0, 则说A线性无关。
-
7.设向量组α1,α2,α3,α4线性无关,则下列向量组线性无关的是
-
8.若向量组所包含向量个数等于分量个数时,判定向量组是否线性相关即是判定这些向量为列组成的行列式是否为零。若行列式为零,则向量组线性相关;否则是线性无关的。A.正确B.错误
-
9.若向量组所包含向量个数等于分量个数时,判定向量组是否线性相关即是判定这些向量为列组成的行列式是否为零。若行列式为零,则向量组线性相关;否则是线性无关的。A.正确B.错误
-
10.求向量组的秩及一个极大无关组,并把其余向量用极大无关组线性表示。