答案:解 特征多项式MQe1OZvv716zbcd-rfXF31D6Hu2-4UDo5kdyxIS0Sk2KRgECsoFniCP9lTb9TJ4iPuiBoSI2KruATsadnXa7yw有两个特征值 3(1 重), -1 (2 重). DWzwnN5cn9sJGA15SmlyzQ中属于特征值 3 的若当块只有 1 个EX01lbMpkG2NT_bhQH7lCA . 对特征值 -1 计算出
Q6xSrN4OXEXdLPtNNnC9YpjqiezxJhnEWcTeHah3mjXSXkW1zJ7qxp7yN6P6FpP6y8Q_gTA9nP6f9Z57TaDasnLaAdZCXVTUJoKyGO81SJ7RS46c4BmJQ9SuDUR_l5FgJDQlIF-xGbBdkKwLS2dRS1gt7Pzyt_Sol99xlLhlnbds9bwzT70BUA6AZpd3iHB335IkDBITrYBXP81M3RDyKDLnXdBPn3n75FHBlguYnM7X4rsl65tZqaom0UzRE44vrkEegUgD7tZbamRTAWCC6Q
由uqh-oOvD2P9iqZ7dD7XO1IoJHvJPo_UQZb3QWpju5HM 知方程组QDzAXxHv01Bzp82moRPyQQ 的解空间为 1 维,属于特征值 -1 的若当块只有一个,为 VTmubWkoarZFHw11oJBvRw
x0zmMKFQX9GBe9ihINao0TIv4qBITJSY7_fVzSSpG8fNEU2brdeGWyNk7UzzLbR0gU4rFEzEg-Pfguz3co-5pw
解方程组 eNjKY_a5XbQIldmiYd8h1A求出基础解GCr2UnIn0rnB4RdTtNEUYVrXZ1RyRkHP9ArWs0S0IMRvOoZpFh-gs-MwWBzZZB-8在LPfDxakRdwy3zvWfunIxAg 左乘作用下应满足箭头图bfBv4Fqj1sy9hX9zs2azx2kBjHSgUsxghZBdMFtgwGJJQU2ztlVH-U_3kaB2xuZX 解方程组ovtS-aWDy_MUmvWNO5Ei3w的一 个解 VDiLfNJTnqyzU3o82KvKrQHj1vqbSUiQnj6TKDD-3zc 使Vna9oe8xqQQiuoqDnxTarsK6dGPHDS34cDNDemz3_e6SLjYFceDi9aFGaHiWPeFvonwo3U6ON1B1Px5kMv_upg则 zQi8rU_vgBGJntHWVj8AMg符合箭头图要求.
svZRKdcJH8UV9wguaGsir9qqVZNZJz_rOXKzYEbN0AI05G5U6rzAMltEkJK04vNj03XACIBPDQzRp0EIM1LF5Sin630eCGGs5rjCWXd-DUXI2pFv33Q0JqmZDrH6mWc44m-WKmcIpngmQxWwqbiV9db6b-0voE80dyV4ThAbQNl7GUwdU3s_PKNDpsDN9wGGj7YrgArrWDZ4fP33LK3Rhj8dUrpoG0xwaZZHAQxi6ur-qOeB_Tw3gJSP6oKLSBF7rJUPoE5OOHdFR3majhdO7Q