答案:证 定理11.2:设定义在[tex=3.286x1.357]ugs2P6HQ7Rk9uhTQ2Nrj6A==[/tex]上的两个函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]和[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]都在任何有限区间[tex=2.143x1.357]ddaINSi3UG8osy8ihibO2g==[/tex]上可积,且满足[tex=5.571x1.357]zw79rM6K/IIIv0j4FZoBKUj7KZqSJi8msdC3f953KrI=[/tex],[tex=4.5x1.357]Lo5KJ9LjKzAThGaMdpP2q4YK8mUW1XOMo9kAeQBwpeA=[/tex],则当[tex=5.643x2.714]3pNoSZFnUDFEmRZyE649S+MogUJQl6W4XybwkeMzsFw=[/tex]收敛时,[tex=6.214x2.714]3pNoSZFnUDFEmRZyE649SwTSM4/NPVzhZVNbJj2naGc=[/tex]必收敛.[br][/br]定理 11.2 的证明如下。[br][/br]对[tex=2.357x1.071]ghJXJtBd3IXQSpXoMpDSwV4Cy1fIU/jEONBwSa5nCVY=[/tex],[tex=3.214x1.071]jk0DIlmFdQsPRXdJEwbkpA==[/tex],[tex=3.5x1.214]n+aQM6Fjxp+E1VButeWbiQ==[/tex],[tex=3.0x1.214]gutlL2Z8M61Dfjj34XsDsQ==[/tex], 有[tex=8.0x2.857]lgBzfVSvkKyr6Fcx5cPzgBXOq6/QLvSxBbz4FsRK/GJxfZEoUcEBg8OrQTAs4IdrrdJRiG01h+gL98JVGSEmow==[/tex][br][/br]再由不等式[tex=5.571x1.357]zw79rM6K/IIIv0j4FZoBKUj7KZqSJi8msdC3f953KrI=[/tex], 有[tex=14.929x2.857]lgBzfVSvkKyr6Fcx5cPzgNdux8vQusa6k6fDd+1DRsgTsCoKk9IiqSZTj6C4DFtsiO1RBl7irQoBzlKl6A7STJ9MLJ0vOkzrammccaM3GGJXQKQ2tXdxloJoNokHzhxLaI0g8qKiQNj/QLncOP49ow==[/tex][br][/br]即[tex=6.214x2.714]3pNoSZFnUDFEmRZyE649SwTSM4/NPVzhZVNbJj2naGc=[/tex]收敛