请在 下方输入 要搜索的题目:

如图①,已知点D在AB上,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,且M为EC的中点.(1)求证:△BMD为等腰直角三角形.(思路点拨:考虑M为EC的中点的作用,可以延长DM交BC于N,构造△CMN≌△EMD,于是ED=CN=DA,即可以证明△BND也是等腰直角三角形,且BM是等腰三角形底边的中线就可以了.)请你完成证明过程.(2)将△ADE绕点A再逆时针旋转90°时(如图②所示位置),△BMD为等腰直角三角形的结论是否仍成立?若成立,请证明:若不成立,请说明理由.https://bgk-photo.cdn.bcebos.com/doc/pic/item/5bafa40f4bfbfbedec29a6b87ff0f736aec31f80.jpg

如图①,已知点D在AB上,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,且M为EC的中点.(1)求证:△BMD为等腰直角三角形.(思路点拨:考虑M为EC的中点的作用,可以延长DM交BC于N,构造△CMN≌△EMD,于是ED=CN=DA,即可以证明△BND也是等腰直角三角形,且BM是等腰三角形底边的中线就可以了.)请你完成证明过程.(2)将△ADE绕点A再逆时针旋转90°时(如图②所示位置),△BMD为等腰直角三角形的结论是否仍成立?若成立,请证明:若不成立,请说明理由.https://bgk-photo.cdn.bcebos.com/doc/pic/item/5bafa40f4bfbfbedec29a6b87ff0f736aec31f80.jpg

发布时间:2025-04-04 18:39:57
推荐参考答案 ( 由 快搜搜题库 官方老师解答 )
联系客服
答案:(1)证明:延长DM交BC于N,∵∠EDA=∠ABC=90°,∴DE∥BC,∴∠DEM=∠MCB,在△EMD和△CMN中,∴△EMD≌△CMN,∴CN=DE=DA,MN=MD,∵BA=BC,∴BD=BN,∴△DBN是等腰直角三角形,且BM是底边的中线,∴BM⊥DM,∠DBM=∠DBN=45°=∠BDM,∴△BMD为等腰直角三角形.(2)解:△BMD为等腰直角三角形的结论仍成立,证明:作CN∥DE交DM的延长线于N,连接BN,∴∠E=∠MCN=45°,∵∠DME=∠NMC,EM=CM,∴△EMD≌△CMN(ASA),∴CN=DE=DA,MN=MD,又∵∠DAB=180°-∠DAE-∠BAC=90°,∠BCN=∠BCM ∠NCM=45° 45°=90°,∴∠DAB=∠BCN,在△DBA和△NBC中,∴△DBA≌△NBC,∴∠DBA=∠NBC,DB=BN,∴∠DBN=∠ABC=90°,∴△DBN是等腰直角三角形,且BM是底边的中线,∴BM⊥DM,∠DBM=∠DBN=45°=∠BDM,∴△BMD为等腰直角三角形.
专业技术学习
专业技术学习
搜搜题库系统